
P H Y S I C A L R E V I E W L E T T E R S week ending
16 APRIL 2004VOLUME 92, NUMBER 15
Achieving a BCS Transition in an Atomic Fermi Gas
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We consider a gas of cold fermionic atoms having two spin components with interactions charac-
terized by their s-wave scattering length a. At positive scattering length the atoms form weakly bound
bosonic molecules which can be evaporatively cooled to undergo Bose-Einstein condensation, whereas
at negative scattering length BCS pairing can take place. It is shown that, by adiabatically tuning the
scattering length a from positive to negative values, one may transform the molecular Bose-Einstein
condensate into a highly degenerate atomic Fermi gas, with the ratio of temperature to Fermi
temperature T=TF � 10�2. The corresponding critical final value of kFjaj, which leads to the BCS
transition, is found to be about one-half, where kF is the Fermi momentum.
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negative values, the entropy is held constant, which leads �@��jT;! and reads
Much progress has been made in the achievement of
increasingly degenerate regimes of trapped atomic Fermi
gases [1–7]. One of the major goals of studies of these
systems is to observe a transition to a paired-fermion
superfluid state. In a recent MIT experiment on a sympa-
thetically cooled single component Fermi gas, a system
with T=TF � 0:05 and 3 � 107 fermions was realized [7],
where TF is the Fermi temperature. As trapped atomic
gases present an essentially impurity free system, with
density, temperature, and interaction strength all free
parameters, they offer great opportunities for investiga-
tion of fundamental theories of superfluid states.

An important new step in experiments has been the use
of Feshbach resonances, whereby one may tune the
s-wave scattering length a from positive to negative
over many orders of magnitude [8]. This opens up the
possibility of investigating the Bose-Einstein condensate
to Bardeen-Cooper-Schrieffer (BEC-BCS) crossover [9–
12]. The BCS limit occurs for kFjaj � 1, where kF is the
Fermi momentum and a < 0. In this case the fermion pair
size is much larger than the interatomic spacing. The BEC
limit occurs for a positive scattering length much smaller
than the interparticle separation. Then the fermions form
weakly bound dimers, and the Bose-Einstein condensa-
tion of these composite bosons may be described by the
well-developed theory of trapped BEC’s [13]. Recently,
long-lived molecules have been created in a reversible and
therefore adiabatic fashion from a degenerate Fermi gas
by tuning the scattering length [14]. This provides many
possibilities for evaporatively cooling the molecules
into the BEC regime. In contrast, a BCS transition re-
quires very low temperatures not yet obtained in two-
component Fermi gases.

In this Letter, we present a straightforward theoretical
analysis which shows that a deeply degenerate Fermi gas
may indeed be created from a molecular BEC. By adia-
batically changing the scattering length from positive to
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to a strong decrease in temperature. This suggests a novel
method of cooling a Fermi gas to extremely low tempera-
tures. One can then reach a temperature T � 10�2TF and
achieve a BCS transition.

Consider a harmonically trapped Fermi gas described
by the grand canonical ensemble with two equally popu-
lated spin states. The entropy of the gas above the critical
temperature is equal to the entropy of an ideal Fermi gas
in a trap with mean field corrections. Omitting these
corrections the grand potential � is [15]

� � kBT
Z 1

0
d����	 ln
1 � n��	�; (1)

with ���	 the density of states and

n��	 � 1=fexp
�����	�  1g (2)

the Fermi weighting factor. For a harmonic trap, the
density of states for a noninteracting two-component
gas in the semiclassical limit is

���	 � �2=� h!	3 � A�2: (3)

Substituting Eq. (3) into Eq. (1) and integrating by
parts, one obtains the simplified integral � �
��A=3	
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The entropy may then be obtained from the relation [15]

S � �@T�j�;!; (5)

giving
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A relation between the total number of particles and
the chemical potential follows from the equation N �
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N ’ �A=3	
�3  �2�kBT	2��: (7)

So, to lowest order, the chemical potential is � �
�3N=A	1=3 and the expression for the entropy becomes

S � kBN�2T=TF O�T3	; (8)

where TF � �3N	1=3 h! is the Fermi temperature of the
noninteracting gas. In the case of an interacting Fermi
gas, the lowest order mean field correction in the Thomas-
Fermi limit leads to the appearance of an extra multiple
�1  64kFa=35�2) in the numerator on the right-hand
side of Eq. (8). This gives a correction of less than 10%
to the entropy for kFjaj � 1=2. It may therefore be ne-
glected in our calculations. Equation (8) is valid for
kBT > h! in an isotropic potential. Its validity extends
to much lower temperatures (although much larger than
the inverse density of states at the Fermi energy) for
incommensurable trap frequencies.

Consider the analogous calculation for a BEC of
weakly bound molecules at a > 0. We assume that the
condensate is in the weakly interacting regime, with � �
n1=3

molamol � 1, where nmol is the molecular density in the
trap center and the scattering length of two molecules
amol is related to the atomic scattering length a by amol �
0:6a [16]. Note that these weakly bound molecules exhibit
a remarkable collisional stability at large values of a
[14,16]. This stability originates from a strong decrease
in the relaxation rate to deep bound states with increasing
a, and should enable efficient evaporative cooling [16]. A
small value of � may be reached in experiments by
reducing the trap frequencies.

If � � 1, the mean field shift in the condensation
temperature is �TBEC=TBEC � �3:25�5=4 [13] and the
quantum depletion of the condensate is negligible so
that Bogoliubov theory may be used. It also implies

kBTBEC=EB � 7:78�5=2 � 1; (9)

where EB ’ h2=ma2 is the molecular binding energy. This
condition, together with T < TBEC, ensures that the mole-
cules may be treated as weakly interacting bosons and any
effect due to their thermal dissociation is negligible. The
grand potential is

� � kBT
Z 1

0
d����	 ln�1 � e���	; (10)

where � now refers to the temperature of the Bose gas.
The density of states for an interacting BEC in the
Bogoliubov approximation may be calculated directly
from the Bogoliubov Hamiltonian as ���	 � Tr
����
ĤHBog	�. In the Thomas-Fermi limit, which holds for a
molecular condensate with chemical potential �mol �
h!, the density of states may be approximated semiclas-
sically by

���	 ’
ZZ d~rrd ~pp

�2� h	3
�
�� �Bog� ~pp; ~rr	�; (11)

where the energy of Boguliubov excitations is (see [13]
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and references therein)

�Bog �

( ������������������������������������������������������������������������
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(12)

Here mmol � 2m is the mass of a molecule and

n0�r	 � ��mol=gmol	�1 � r2=R2	 (13)

is the Thomas-Fermi density profile, with R �
�2�mol=mmol!

2	1=2. The coupling constant for the
molecule-molecule interaction is gmol � 4� h2amol=mmol.
The exact calculation of Eq. (11) yields
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where z � �=�mol is the rescaled energy and %0 �
cos�1�1=

������������
1  z

p
	. In the limit kBT * �mol,
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Given the density of states, the entropy can be calculated
from Eqs. (5) and (10). The resulting expression is

S � kB
Nmol

&�3	

�
T

TBEC

	
3
G���mol	; (16)

where & is the Riemann zeta function, with &�3	 �
1:202 . . . , Nmol � N=2 is the number of molecules, and

G�u	 � u3
Z 1

0
dzf�z	

�
uz

euz � 1
� ln�1 � e�uz	

�
; (17)

with u � ��mol, and f�z	 � 
� h!	3=�2
mol���z�mol	 so as

to make the units explicit. Equation (17) may be inte-
grated numerically, or explicitly in the limit of Eq. (15),
in which case

S � kBNmol
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This expansion is accurate to within 10% for kBT=�mol �
1=10. In the above expression for the entropy, the con-
densation temperature for a noninteracting Bose gas,
kBTBEC � h!
Nmol=&�3	�

1=3, was used. Setting the en-
tropy of the molecular condensate and of the Fermi gas
equal, one obtains the final temperature of the Fermi gas:�

T
TF

	
final

�
G���mol	

2�2&�3	

�
T

TBEC

	
3

initial
; (19)

where � refers to the initial temperature.
In the strongly degenerate regime, evaporative cooling

of a Fermi gas becomes difficult, so that until recently a
maximum degeneracy of T=TF � 0:2 appeared to be a
lower limit, preventing the observation of the BCS tran-
sition. The adiabatic tuning of a molecular condensate
150404-2
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suggests an alternate method to cooling the fermions
directly. According to Eqs. (8) and (16), the entropy is
proportional to T for fermions and T3 for bosons. The
limits of evaporative cooling for a Thomas-Fermi Bose
condensed gas are given by � ’ kBT. Thus the final
degeneracy that may be obtained by adiabatic switching
of an evaporatively cooled molecular BEC is given by
Eq. (19), with G���mol	 � G�1	 ’ 8:32. Larger values of
��mol are in principle achievable, e.g., by sympathetic
cooling. In Fig. 1 is shown the final temperature as a
function of the initial temperature for various interaction
strengths given by the ratio �mol=kBTBEC.

The lowest experimentally achieved temperature of a
degenerate Fermi gas to date is T=TF � 0:05 [7]. This
temperature may be obtained by adiabatic switching of a
molecular BEC of temperature T � 0:5TBEC with �mol ’
kBT, which is routinely achieved for atomic BEC’s. A
temperature of T � 0:25TBEC with �mol ’ kBT, as, for
example, achieved for an atomic Bose condensed gas in
Ref. [17], would give T=TF � 5 � 10�3.

This offers exciting possibilities for obtaining deeply
degenerate Fermi regimes, such as observing the BCS
transition in the weakly interacting regime kFjaj � 1.
The corresponding critical condition is obtained by sub-
stituting into Eq. (19) the BCS critical temperature cal-
culated in Ref. [18]:

TBCS=TF � * exp���=2kFjaj	; (20)

where * � e+��1�2=e	7=3 ’ 0:277, + being Euler’s con-
stant. Strictly speaking, in an isotropic harmonic poten-
tial, Eq. (20) is valid only in the limit kBTBCS � h!.
However, for kFjaj � 1=2 or 1=3, it gives a result accurate
to 30% for kBTBCS ’ 2 h! [19]. In the right axis of Fig. 1 is
shown the critical value �kFjaj	c ensuring Tfinal � TBCS,
as a function of TBEC=T: �kFjaj	c is on the order of one-
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FIG. 1. Final temperature of the Fermi gas (left axis) and
critical condition for a BCS transition (right axis) as a function
of the initial temperature of the Bose condensed molecular gas
that has been transformed to a normal attractive Fermi gas via
adiabatic switching of the scattering length. The curves, from
upper to lower, correspond to �mol=kBTBEC � 1, 1=2, and 1=4,
where �mol is the molecular chemical potential.
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half, a regime already accessible by present experiments.
It should be noted that our treatment is exactly valid only
in the regime kFjaj � 1, as we have used BCS theory.
The values of �kFjaj	c that we find are not extremely small
compared to unity; we therefore expect corrections to
both the equation of state of the normal phase and the
critical temperature. Our result must therefore be consid-
ered as an estimate.

Fermi gases have been predicted to be sensitive to
heating due to particle losses, much more so than Bose
condensates [20]. One may ask what the limit is on the
accessible final temperature set by this heating during the
adiabatic tuning of a. Assume a loss rate +loss of atoms
due mainly to collisions with the background gas and let t
be the duration of the adiabatic ramp. Using the derivation
of Ref. [21] and assuming that +losst � 1 and �T=TF	

2 �
1, the temperature increase due to loss may be estimated
as �T=TF	increase �

�������������������������
+losst=�2�

2	
p

. One may take t�
1=
+coll�T=TF	

2�, where +coll � n.vF is the classical col-
lision rate involving the scattering cross section . ’
4�a2. Here n is the total density, vF � hkF=m is the
Fermi velocity, and a factor of �T=TF	

2 is included to
account for the Pauli blocking for each of the two com-
ponents [6]. Then, supposing �T=TF	final � 10�2, one finds
the condition


+loss=�2�
2+coll	�

1=4 & �T=TF	final � 10�2 (21)

in order to avoid a loss-induced increase in temperature
during the switching time. For the first experiment of
Ref. [14], +loss < 10�2 s�1, and Eq. (21) is satisfied for
a * 1000a0 and n * 5 � 1012 cm�3, where a0 is the
Bohr radius.

In order to satisfy the criterion of adiabaticity, thermal
equilibrium must be maintained while tuning the scatter-
ing length from positive to negative values. This requires
that the thermalization rate, i.e., the rate of elastic colli-
sions, be much larger than the rate of change of a [22]. For
a > 0, thermalization is due to collisions between non-
condensed molecules. As the size of the noncondensed
cloud is close to the size of the condensate for kBT �
�mol, the effective collision rate is thus +eff �
+mol

coll NT=Nmol, where NT=Nmol is the noncondensed frac-
tion and +mol

coll � nmol.molvT , with vT the thermal velocity
and .mol � 8�a2

mol the scattering cross section between
two molecules. For T=TBEC � 1=2, the noncondensed
fraction is �T=TBEC	

3 � 1=8 [13]. Assuming a� 1000a0

and the mass of 6Li, even for molecular densities nmol as
small as 1012 cm�3, this gives a minimum thermalization
time of �30 ms. For a < 0, the rate of thermalization is
strongly reduced by Pauli blocking, and one has +eff �
+coll�T=TF	

2 [6]. At the critical value of kFjaj � 1=2, and
for a total density of 5 � 1012 cm�3, adiabaticity requires
that the change of the scattering length occurs on a time
t > 300 ms. This time is longer than the inverse oscilla-
tion frequency of lithium atoms in typical magnetic traps,
so that the change in a will not induce macroscopic
oscillations in the gas.
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It is thus far not possible to obtain a perfect balance of
spin states in a Fermi degenerate gas [14]. It may there-
fore be supposed that a small fraction of fermions will
remain unpaired for positive scattering lengths, due to a
lack of partners, and will coexist with the molecular
condensate. Fermions have an entropy proportional to
T, as opposed to T3 in the case of bosons. So even a small
number of atoms could be expected to dominate the total
entropy of the atom-molecule mixture at low tempera-
tures, thereby interfering with the proposed cooling
scheme. This problem can be avoided by simply removing
the excess fermions from the system for a > 0 with a
correctly tuned laser pulse, which requires that their
excitation frequencies are sufficiently different from
those of the molecules [23].

In conclusion, we have shown that adiabatic switching
of a molecular BEC allows one to obtain a deeply degen-
erate Fermi gas of temperatures on the order of T �
10�2TF. This suggests a way to achieve a BCS transition
in the weakly interacting regime. It is important to note
that our thermodynamic approach does not require a
knowledge of the equation of state of the system in the
intermediate strong coupling regime where kFjaj * 1.
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Note added.—Since submission of this Letter, long-
lived BEC’s of weakly bound molecules have been
observed [25], and a strongly interacting fermionic
condensate in the BEC-BCS crossover regime was cre-
ated [26].
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